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ABSTRACT 

General formulae for the higher order derivatives of the 

energy with respect t o  the internuclear separation of a diatomic 

molecule are derived from the Hellmann Feynman theorem and the 

Integral Hellmann Feynman theorem. The phenomenon of the - .  can- 

cellatioi; of terms ixvolving the charge d e n s i t y  and its deriva- 

tives, which has been observed for the second order derivative 

by Salem, is shown to prevail for third and higher order deriva- 

tives. On this basis an approximate working formula is suggested. 

A new condition under which an approximate wave function satisfies 

the Hellmann Feynman theorem rigorously is given. With such an 

approximate wave function, the formulae for the general deriva- 

tives of the energy derived are also shown to be valid. 
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The derivatives, =--- where Re is t5e equilibrium 
- 

internuclear separation of the diatomic molecule, are the important 

physical constants in ccnnecticn with molecular vibration. For 

ins t anc e 

the quadratic force constan.t, and 

p E"' is is the binding energy, E"' is zero, 

E'3' is the cubic force constant. 

The usual treatments of the derivatives make use of the 
5 Hellmann Feynman theorem, 1'-4 

quantum mechanical virial theorem. 

the general formulae of 

the perturbation theory , or the 
6 Our present derivations of 

E"' are based on the Hellmann Feynman 

theorem' and the Integral Hellmann Feynman theorem 7 , 8 2 9  

4 
A general Formula of was give= recently by Schvendernan 

through the successive differentiation of the Hellmann Feynman 

theorem, by use of the bcdy fixed coordinate system on one of the 

atoms. His final form'' contains the derivative of the charge 

density with respect to the nuclear displacement. In the differentia 

tion, the position vector of the observation point with respect to 

the atom is held constant. 

In the present work, we employ the space fixed coordinate 

system in which cne of the atoms is fixed. As a result one can 

visualize the relative importance ef the various terms involved 

so that m e  can get more insight, especially when one seeks an 

approximate form. 
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In Sec. TI, Che derivations are given by use of the expansion 

of the irtegral of  the type 14 flg,dT 

of the nuclear displacement due to Bingel. 

in the power series 

11 

In See. 111, we discuss the cancellation between the terms 

involving the density and its derivatives. The emphasis is placed 

on and an approximate form is suggested. In addition, p v  
we present the new prescription of ''a stable wave function" by 

use of the Integral Hellrnann Peynman theorem. 

11. F O W  DERIVATION 

A. fie Electrcstatic Approach - 
According to the Hellmann Feynman theorem, 

the force acting on the nucleus A of the diatomic molecule, due 

to the other nucleus 3 and the surrounding electronic charges, 

is given by - 

where $A and tB are the nuclear charges of the atoms A and B, 

and @g;gA)  is the first order density normalized to N, the 

total number of electrons (see Fig. 1). 
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It should be emphasized t h a t  t h e  nucleus B i s  f i x e d  t o  t h e  

c o o r d i n a t e  frame which i t s e l f  i s  f i x e d  i n  space. 

We are i n t e r e s t e d  i n  t h e  higher  o rde r  d e r i v a t i v e s  of t h e  

energy wi th  r e s p e c t  ts t t e  i n t e r n u c l e a r  s e p a r a t i o n  a t  the e q u i l i -  

brium c o n f i g u r s t i c n ,  R = R . From t h e  success ive  d i f f e r e n t i a t i o n  

of bo th  s i d e s  of t h e  Eq. (2), one has  

0 

(3)  
where i s  de f ined  by 

It c a n  be shownll t h a t ,  f o r  an a r b i t r a r y  f u n c t i o n  
9 
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14 The first three derivatives are 

Eq. (12).is the Salem’s formula3 for the quadratic force constant. 

B. The Integral Hellmann Feynman Theorem 

Suppose that: 

(Lt-EVg 50 
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The sum of t h e  a l l  ol-ders of the p e r t u r b a t i o n  e n e r g i e s ,  due t o  

t h e  p e r t u r b a t i o n  may 3e w r i t t e n  by t h e  I n t e g r a l  Hellmann 

Feynman theorerc, 
-d,b,9 

where t h e  last  e q u a l i t y  i s  based on t h e  coord ina te  system g iven  i n  

F i g .  1. The i n t e g r a t i o n  i s  over t h e  space of t h e  e l e c t r o n  1, and 

which w e  s h a l l  c a l l  t h e  t r a n s i t i o n  d e n s i t y  h e r e a f t e r .  Now from 

15 
For k~ E q .  (2;) g i v e s  E q .  (ll), and f o r  k=o 6nd 3, one has  
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111. Discussion 

Suppose t h a t  394 

fe  f A - 4  4 9  

where (i) the  6 i s  t h e  p a r t  0 .  4 which i s  s p h e r i c a l  around 

t h e  nucleus A and fo l lows  r i g i d l y  A wi thou t  deformation, 

and ( i i )  t h e  i s  t h e  corresponding d e n s i t y  which fo l lows  

B and i n  a d d i t i o n ,  ven i shes  i n  t h e  v i c i n i t y  of A and a t  t h e  l e f t  

of 

i s  t h e  r e s t  of . Now t h e  does n o t  c o n t r i b u t e  t o  t h e  f o r c e  

according t o  Eq. (2)  and consequent ly  does no t  c o n t r i b u t e  t o  

A a t  t h e  equ i l ib r ium s e p a r a t i o n  ( s e e  F ig .  l), and ( i i i )  t h e  6 

EIK) 

f o r  any k. A l s o ,  f o r  t h e  coord ina te  system given F ig .  1, 

f o r  an a r b i t r a r y  f u n c t i o n  h ( r ) ,  - and 

For i n s t a n c e ,  f r o n  Eqs. (12)  and ( 1 3 ) ,  

c 

and 
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3 where Eqs. (25)  and (27) are originally due to Salem . 
From Eqs. (123 and (13), one can say that there is an extensive 

cancellation between terms involving the charge density and its 

of the 16 derivatives . In fact th2 recent calculation of 

17 H molecule by Benston et. al. shows 2 

L k N b \ k ) +  k = e\.%\ ( 4 . M . )  
t - S C . \ q  c 3.4\) 

Now from Eq. ( 9 1 ,  one can write 

where QtKI contains only . For example, D 

If this is done, however, the following contradictions occur: 
t i l  (a) e $ 0  even when R 

which means 100% screening. 

is the equilibrium separation unless 
0 

te = \ r::9 JT 
(b) It was shown that empirically3 one has 

where 9~ is the nuclear electric quadrupole coupling constant, 



8 

. 

b u t  it i s  a l s o  known t h a t  t h e  mcst i m p o r t a i t  c o n t r i b u t i o n  t o  

comes from d e c s i t y  c e n t e r e d  a t  t h e  atom A i f  one uses  

molecular o r b i t a l  d e s c r i p t i o n  ., However, %a belongs t o  

which E q .  (33)  n e g l e c t s .  

1 

1 9  (e.) 

(c) The r a t i o  of t h e  e l e c t r o n i c  and t h e  n u c l e a r  charge con- 

--. 

ECU' €:I 
t r ibu  t ions t o  i s  given,  according t o  E q .  ( 3 3 ) ,  b y T w , =  & 

, (% 4 .wh ich  i s  n o t  r e a l i s t i c ,  as Schwendeman po in ted  o u t .  

A compromise may be t o  n e g l e c t  @:'and r e t a i n  t h e  i n t e g r a l  

With t h e  Wang f u n c t i o n  ( 

For k= \ , E q .  (35)  i s  e x a c t .  For kc-s 2 , one has  t- 

R e s  i,45 , t h e  o r b i t a l  exponent 

f o r  t h e  H molecula ( s e e  E q .  (29)  f o r  comparison). 2 

Although t h e  p l a u s i b i l i t y  of t h e  approximation g iven  by E q .  

(36 )  -(.or i n  gene ra l  E q .  ( 3 5 ) )  i s  s u b j e c t e d  t o  f u r t h e r  numerical  

checks,  a t  t h i s  p o i n t  however one may c o n j e c t u r e  E q .  (36)  as (approxi-  

mate) working formula f o r  E . ( 3 )  

Now i t  may b e  i n s t r u c t i v e  t o  n o t e  t h a t  t h e  p a r t  of t h e  t r a n s i -  

t i o n  d e n s i t y  which i s  symmetrical w i t h  r e s p e c t  t o  t h e  p l ane  pass ing  

( O , O ,  7 ) and pe rpend icu la r  t o  t h e  i n t e r n u c l e a r  a x i s ,  say , &A 
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does not contribute to the energy change according to Eq. (17). 

Therefore E does not include any contribution from . 
Furthermore the par: of 6 which dces not change, say Ss Y 

. For such part of the transition (0 tr, gives 6, ss, =..r = 0 

fact, for an infinitesimal ch.ange of the internuclear separation, 

one sees that 5 6 and 5 c) fi . However, since the tran- 

sition density is defined only after description of the molecular 

wave function is given, it may not meaningful physically as the 

ordinary charge density p . 
It is known that the Hellmann Feynman theorem given by Eq. (l), 

upon which the present derivation of Eq. (9) is based is highly 

sensitive to the error in 

variational wave function 

the correct expression is 

wave function employed. Indeed, with the 
# 

5 , which satisfies (TI ~-21 %>SO, 

where the term with the square bracket [ 3 does not 

vanish in general. m e  prescription of the "stable wave function 121, 

which, by definition, satisfies 

4 is well summarizsd by Sehwendeman . Thus avoiding the further dis- 

cussion on this natter here, we just like to give a new prescription 

of a stable function in the following. 

From Eq. (17), which is the Integral Hellmann Feynman theorem 7,899 
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one can d e r i v e  t h e  Eiellmc-nn Feynman theorem, without  employing 

t h e  cond i t ion  ( &E)%% [H,-&)+O. Therefore  one can  say  t h a t  22 

:.G IL 

t hen  Eq. ( 3 9 )  i s  r i g o r o u s l y  v a l i d ,  o r  i . e . ,  t h a t  

s t a b l e  wave func t ion .  

v a r i a t i o n a l  wave f u n c t i o n s  and go are made of a common 

b a s i s  set, t h e n  Eq. (40)  i s  s a t i s f i e d .  Furthermore,  i t  i s  now 

apparent  t h a t  Eq. (21)  i s  also t h e  r i g o r o u s  r e p r e s e n t a t i o n  of 

i f  QQ. (40 )  is  s a t i s f i e d .  

5 i s  a 

Ac tua l ly ,  Epstein’ found t h a t  i f  t h e  
rJ 
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